

# Solving for binary inspiral dynamics using renormalization group methods

Chad Galley (JPL/Caltech)
Ira Rothstein (CMU)
Capra 20, UNC Chapel Hill, June 19, 2017



## **Motivation**

- Solving equations of motion for compact binary inspirals is important but has challenges
  - Must be achieved using numerical methods, which is a bottleneck for gravitational wave data analysis applications
  - Important phase errors over many thousands of orbits (e.g., in LIGO's bandwidth) can be caused by inaccurately capturing the effects of very weak nonconservative forces
  - Often can involve using high-order adaptive solvers to provide sufficiently accurate numerical solutions over a very large number of orbits
  - Perturbative solutions exhibit secular behavior making result invalid over short times
  - At least one of these issues are often encountered in solving other types of nonconservative equations of motion
- Most analytical methods for gravitational wave source problems are based on orbitaveraging/adiabatic approximations
  - Advantages:
    - Simpler equations to solve
    - · Often provides useful qualitative understanding of the system's physical tendencies
  - Disadvantages:
    - Ambiguity about timescale to use for averaging: Period is associated with mean, eccentric, or true anomalies? [see Pound & Poisson (2008)]
    - Not a systematic procedure
    - · What are the errors of the resulting approximate solutions?
    - Lose real-time phase information
    - Tend to be less useful as a system becomes more complicated (e.g., precession)
       [see Chatziioannou et al (2016) for recent progress]

## **Dynamical Renormalization Group**

#### Overview

- Background:
  - Introduced as a method for solving ODE's by Chen, Goldenfeld, and Oono (1996)
  - Based on Renormalization Group Theory from high-energy and condensed matter physics
  - Encapsulates several other asymptotic methods of global analysis including:
    - Multiple-scale analysis
    - WKB theory
    - · Boundary layer theory
  - Based on naive perturbation theory
  - **Systematic** 
    - Provides a turn-the-crank method of finding globally valid approximate solutions
    - Provides a formal error estimate on the perturbative solution
    - Contains strong self-consistency checks of the calculation
- Basic idea
  - Time at which to build a perturbative solution is arbitrary
  - Perturbative solutions (at fixed order) at different times have the same form but different initial data parameters
  - These solutions are related to each other by "renormalization group flows" from one initial data set to another.
  - What gets renormalized? Initial data parameters.

$$x(t) = X_0 + V_0(t - t_0) + \mathcal{O}(t - t_0)^2$$

$$x(t) = X_0' + V_0'(t - t_0') + \mathcal{O}(t - t_0)^2$$



$$x(t) = X'_0 + V'_0(t - t'_0) + \mathcal{O}(t - t_0)^2$$
  $t'_0 = t_0 + \delta t \implies X'_0 \approx X_0 + V_0 \delta t$ ,  $V'_0 \approx V_0$ 

Perturbative solutions have same form at different "initial" times and

## **Dynamical Renormalization Group**

## The algorithm

- Write down the equations of motion
- Write down a background solution around which to perturb
  - This solution is written in terms of "bare" parameters (i.e.,  $R_B(t_0)$ ), which implicitly depend upon the initial time  $t_0$ , away from which we flow.
- Use this background to calculate perturbatively the solution to equations of motion.
  - The perturbation will in general have secular "divergences" (i.e., terms that grow as  $(t-t_0)$ ).
- Take this solution and write the bare parameters as renormalized parameters (i.e.,  $R_R(\tau)$ ) plus "counter-terms".
  - Counter-terms will be proportional to  $(\tau t_0)^p$  and are chosen to eliminate the  $t_0$  dependence of the aforementioned solution.
  - $\tau$  is known as the "subtraction point" or "renormalization scale."
  - This step yields the "renormalized" perturbative solution.
  - Renormalized solution must be independent of the choice of  $\tau$ .
  - The solutions' explicit dependence on τ is cancelled by the implicit dependence of the renormalized parameters on τ.
  - Use this fact to derive a first-order differential equation (called the "renormalization group (RG) equation") for the renormalized parameter.
  - The right-hand side of the RG equation is the "beta (β) function."
- Solve the RG equations and set  $\tau = t$ , the observation time.
  - All of the secularly growing terms are resummed at this order in perturbation theory.



# Binary inspirals at leading post-Newtonian order

## **Equations of motion**

0PN equations of motion in polar coordinates (motion occurs in a plane for all time)

$$\ddot{r} - r\omega^2 = -rac{M}{r^2} + rac{64M^3
u}{15r^4}\dot{r} + rac{16M^2
u}{5r^3}\dot{r}^3 + rac{16M^2
u}{5r}\dot{r}\omega^2 \ r\dot{\omega} + 2\dot{r}\omega = -rac{24M^3
u}{5r^3}\omega - rac{8M^2
u}{5r^2}\dot{r}^2\omega - rac{8M^2
u}{5}\omega^3$$

- Radiation reaction from gravitational wave emission causes orbit to depart from a background orbit
  - For definiteness, consider a background circular orbit with a Keplerian angular frequency

$$\Omega_B^2 = \frac{M}{R_B^3}$$

Perturbed orbit is described by:

$$r(t) = R_B + \delta r(t)$$
  $\delta r/R_B \sim \mathcal{O}(v^5)$   $v \sim R_B \Omega_B$   $\omega(t) = \Omega_B + \delta \omega(t)$   $\delta \omega/\Omega_B \sim \mathcal{O}(v^5)$ 

Expand equations of motion to first order in perturbations off of background orbit

$$\delta \ddot{r}(t) - 3\Omega_B^2 \delta r(t) - 2R_B \Omega_B \delta \omega(t) = 0$$
$$R_B \delta \dot{\omega}(t) + 2\Omega_B \delta \dot{r}(t) = -\frac{32\nu}{5} R_B^6 \Omega_B^7$$

#### General solution

General solution is parameterized by four numbers (the bare parameters, "B")

$$r(t) = R_B - \frac{64\nu}{5}\Omega_B^6 R_B^6(t - t_0) + \frac{64\nu}{5}\Omega_B^5 R_B^6 \sin\Omega_B(t - t_0) + A_B \sin\left(\Omega_B(t - t_0) + \Phi_B\right)$$

$$\omega(t) = \Omega_B + \frac{96\nu}{5}R_B^5 \Omega_B^7(t - t_0) - \frac{128\nu}{5}R_B^5 \Omega_B^6 \sin\Omega_B(t - t_0) - \frac{2\Omega_B A_B}{R_B} \sin\left(\Omega_B(t - t_0) + \Phi_B\right)$$

Can shift some bare parameters to remove non-secular sinusoids using trig identities

$$A_B \to A_B - \frac{64\nu}{5} R_B^6 \Omega_B^5 \cos \Phi_B$$
$$\Phi_B \to \Phi_B + \frac{64}{5} \frac{\nu R_B^6 \Omega_B^5}{A_B} \sin \Phi_B$$

This results in the following general perturbed solution:

$$r(t) = R_B - \frac{64\nu}{5} R_B^6 \Omega_B^6(t - t_0) + A_B \sin \left(\Omega_B(t - t_0) + \Phi_B\right)$$

$$\omega(t) = \Omega_B + \frac{96\nu}{5} R_B^5 \Omega_B^7(t - t_0) - \frac{2\Omega_B A_B}{R_B} \sin \left(\Omega_B(t - t_0) + \Phi_B\right)$$

$$\phi(t) = \Phi_B + \Omega_B(t - t_0) + \frac{48\nu}{5} R_B^5 \Omega_B^7(t - t_0)^2 + \frac{2A_B}{R_B} \cos \left(\Omega_B(t - t_0) + \Phi_B\right)$$

- Two types of perturbations off of background orbit
  - Secular terms (grow linearly with time and eventually invalidate the perturbative solution)

$$t-t_0 \sim \frac{1}{\nu\Omega_B^6 R_B^5} \sim \frac{1}{\nu v_B^5 \Omega_B} \implies \epsilon = v^5 \nu \Omega(t-t_0) \ll 1$$
 (expansion parameter for DRG)

Non-secular terms (bounded in time)

#### Renormalization

- Renormalize the initial data parameters
  - Parameters depend implicitly on initial time
  - Write a bare ("B") parameter as a renormalized ("R") parameter plus a "counter-term"
  - Use counter-terms to absorb secular divergences





$$\delta_\Phi=\mathcal{O}(1)$$
  $\delta_R,\delta_\Omega=\mathcal{O}(\epsilon)$   $\delta_A=\mathcal{O}(\epsilon^2)$  (A is already  $\mathit{O}(\epsilon)$ )

- Write perturbative solutions in terms of renormalized parameters
  - Drop higher order terms in  $\epsilon$  for consistency

$$r(t) = R_R + \delta_R - \frac{64\nu}{5} R_R^6 \Omega_R^6 (t - t_0) + A_R \sin \left( (t - t_0) \Omega_R + \Phi_R + \delta_\Phi \right)$$

$$\omega(t) = \Omega_R + \delta_\Omega + \frac{96\nu}{5} R_R^5 \Omega_R^7 (t - t_0) - \frac{2\Omega_R A_R}{R_R} \sin \left( (t - t_0) \Omega_R + \Phi_R + \delta_\Phi \right)$$

$$\phi(t) = \Phi_R + \delta_\Phi + (t - t_0) (\Omega_R + \delta_\Omega) + \frac{48\nu}{5} R_R^5 \Omega_R^7 (t - t_0)^2 + \frac{2A_R}{R_R} \cos \left( (t - t_0) \Omega_R + \Phi_R + \delta_\Phi \right)$$

- Introduce the subtraction point/renormalization scale  $\tau$  through  $t-t_0=(t-\tau)+(\tau-t_0)$
- Choose counter-terms to remove  $(\tau t_0)$  dependencies

$$r(t) = R_R + \delta_R - \frac{64\nu}{5} R_R^6 \Omega_R^6 (t - \tau) - \frac{64\nu}{5} R_R^6 \Omega_R^6 (\tau - t_0) + A_R \sin \left( (t - \tau) \Omega_R + (\tau - t_0) \Omega_R \right) + \Phi_R + \delta_{\Phi}$$

$$\omega(t) = \Omega_R + \delta_{\Omega} + \frac{96\nu}{5} R_R^5 \Omega_R^7 (t - \tau) + \frac{96\nu}{5} R_R^5 \Omega_R^7 (\tau - t_0) - \frac{2\Omega_R A_R}{R_R} \sin \left( (t - \tau) \Omega_R + (\tau - t_0) \Omega_R \right) + \Phi_R + \delta_{\Phi}$$

$$\phi(t) = \Phi_R + \delta_{\Phi} + (t - \tau) \Omega_R + (\tau - t_0) \Omega_R + (t - \tau) \delta_{\Omega} + (\tau - t_0) \delta_{\Omega} + \frac{48\nu}{5} R_R^5 \Omega_R^7 (t - \tau)^2$$

$$+ \frac{96\nu}{5} R_R^5 \Omega_R^7 (t - \tau) (\tau - t_0) + \frac{48\nu}{5} R_R^5 \Omega_R^7 (\tau - t_0)^2 + \frac{2A_R}{R_R} \cos \left( (t - \tau) \Omega_R + (\tau - t_0) \Omega_R + \Phi_R + \delta_{\Phi} \right)$$

• Counter-terms through  $O(\epsilon)$  are:

$$\delta_{R}(\tau, t_{0}) = \frac{64\nu}{5} R_{R}^{6} \Omega_{R}^{6}(\tau - t_{0}) + \mathcal{O}(\epsilon^{2})$$

$$\delta_{\Omega}(\tau, t_{0}) = -\frac{96\nu}{5} R_{R}^{5} \Omega_{R}^{7}(\tau - t_{0}) + \mathcal{O}(\epsilon^{2})$$

$$\delta_{\Phi}(\tau, t_{0}) = -\Omega_{R}(\tau - t_{0}) + \frac{48\nu}{5} R_{R}^{5} \Omega_{R}^{7}(\tau - t_{0})^{2} + \mathcal{O}(\epsilon^{2})$$

$$\delta_{A}(\tau, t_{0}) = \mathcal{O}(\epsilon^{2})$$

## Renormalization Group equations

Recall: bare parameter = renormalized parameter + counter-term

$$R_{B}(t_{0}) = R_{R}(\tau) + \frac{64\nu}{5} R_{R}^{6} \Omega_{R}^{6}(\tau - t_{0}) + \mathcal{O}(\epsilon^{2} R_{R})$$

$$\Omega_{B}(t_{0}) = \Omega_{R}(\tau) - \frac{96\nu}{5} R_{R}^{5} \Omega_{R}^{7}(\tau - t_{0}) + \mathcal{O}(\epsilon^{2} \Omega_{R})$$

$$\Phi_{B}(t_{0}) = \Phi_{R}(\tau) - \Omega_{R}(\tau - t_{0}) + \frac{48\nu}{5} R_{R}^{5} \Omega_{R}^{7}(\tau - t_{0})^{2} + \mathcal{O}(\epsilon^{2})$$

$$A_{B}(t_{0}) = A_{R}(\tau) + \mathcal{O}(\epsilon^{2} A_{R})$$

- Note that the bare parameters are independent of  $\tau$ 
  - Differentiate the bare parameters with respect to  $\tau$  and set the result to zero.
  - Solve for the derivative of the renormalized parameter.

$$egin{aligned} rac{dR_R}{d au} &= -rac{64
u}{5}R_R^6( au)\Omega_R^6( au) + \mathcal{O}(\epsilon^2R_R\Omega_R) \ rac{d\Omega_R}{d au} &= rac{96
u}{5}R_R^5( au)\Omega_R^7( au) + \mathcal{O}(\epsilon^2\Omega_R^2) \ rac{d\Phi_R}{d au} &= \Omega_R( au) \left[ -rac{d\Omega_R}{d au}( au - t_0) 
ight] - rac{96
u}{5}R_R^5( au)\Omega_R^7( au)( au - t_0) + \mathcal{O}(\epsilon^2\Omega_R) \ rac{dA_R}{d au} &= \mathcal{O}(\epsilon^2A_R\Omega_R) \end{aligned}$$

- Secular pieces automatically cancel if the solution is renormalizable
  - Otherwise, secular divergences remain in renormalized parameters, which are supposed to be finite
  - This is a self-consistency check intrinsic to the DRG method

- Solve the RG equations to describe the "flow" from  $\tau = t_i$  to  $\tau = t$ 
  - Analytically, if possible
  - Numerically, otherwise (coupled first-order differential equations)

$$R_R(t) = \left(R_R^4(t_i) - \frac{256\nu}{5}M^3(t - t_i)\right)^{1/4}$$

$$\Omega_R(t) = \Omega_R(t_i) \left(\frac{R_R(t_i)}{R_R(t)}\right)^{3/2}$$

$$\Phi_R(t) = \Phi_R(t_i) + \frac{1}{32\nu\Omega_R^5(t_i)R_R^5(t_i)} - \frac{1}{32\nu\Omega_R^5(t)R_R^5(t)}$$

$$A_R(t) = A_R(t_i)$$

• Substitute the RG solutions into the perturbative solutions and evaluate at  $\tau = t$ 

$$r(t) = R_R(t) + A_R(t)\sin\Phi_R(t)$$
 $\omega(t) = \Omega_R(t) - \frac{2\Omega_R(t)A_R(t)}{R_R(t)}\sin\Phi_R(t)$ 
 $\phi(t) = \Phi_R(t) + \frac{2A_R(t)}{R_R(t)}\cos\Phi_R(t)$ 

#### Comments

- In analogy with quantum field theory calculations, first-order perturbative calculation is sometimes referred to as a "1-loop" calculation
- Solutions to RG equations resum secular divergences order-by-order in  $\epsilon$

$$R_R(t) = R_R(t_i) \left( 1 - \frac{256\nu}{5} R_R^5(t_i) \Omega_R^6(t_i) (t - t_i) \right)^{1/4} + \mathcal{O}(R_R(t_i) v_R^5(t_i) \epsilon)$$

$$= R_R(t_i) - \frac{64\nu}{5} R_R^6(t_i) \Omega_R^6(t_i) (t - t_i) - \frac{6144\nu^2}{25} R_R^{11}(t_i) \Omega_R^{12}(t_i) (t - t_i)^2 + \mathcal{O}(R_R(t_i) \epsilon^3, R_R(t_i) v_R^5(t_i) \epsilon)$$

- Third term is a secular divergence that appears at 2<sup>nd</sup> order but is already captured at first order by the resummation performed by DRG!
- Error estimates are naturally provided during the calculation
- DRG identifies (1-loop) invariants along the RG trajectory

$$R_R^3(t)\Omega_R^2(t)={
m constant}=M$$
 
$$\Phi_R(t)+rac{1}{32
u R_R^5(t)\Omega_R^5(t)}={
m constant}$$
 
$$R_R^4(t)\left(1+rac{256
u}{5}R_R^5(t)\Omega_R^5(t)\,t\right)={
m constant}$$
 
$$A_R(t)={
m constant}$$

- Terms involving  $(t-\tau)(\tau-t_0)$  must be cancelled by pieces generated from counter-terms
  - Provides another self-consistency check of the calculation
  - Removal of such cross terms is important for the renormalizability of the perturbative solution

## DRG to second order in $\epsilon$ : The 2-loop calculation

- Use same equations of motion but expanded to 2<sup>nd</sup> order in the perturbations.
- Find general solution to the 2<sup>nd</sup> order equations
- Shift bare parameters (i.e., initial data) to absorb redundant, finite pieces
  - These shifts have some freedom parameterized by  $\mu$ .
  - Easiest to choose a "renormalization scheme" so as to keep the resulting 2-loop RG equations as simple as possible, which is equivalent to choosing  $\mu$  to remove all the finite, t-dependent pieces in the expression for the 2<sup>nd</sup> order angular frequency solution.
- Renormalize initial data parameters to remove secular divergences.
  - For example:

$$\begin{split} r_{2-\text{loop}}(t) &= \frac{1}{2} \frac{A_R^2}{R_R} - \frac{29\,696}{75} \nu^2 R_R^{11} \Omega_R^{10} \bigg[ -\frac{6144}{25} \nu^2 R_R^{11} \Omega_R^{12} \bigg[ (t-\tau)^2 \bigg[ -(\tau-t_0)^2 \bigg] \\ &- \frac{656}{15} \nu A_R R_R^5 \Omega_R^5 \cos \left( \Phi_R + \Omega_R (t-\tau) \right) + \frac{48}{5} \nu A_R R_R^5 \Omega_R^7 (t-\tau)^2 \cos \left( \Phi_R + \Omega_R (t-\tau) \right) \\ &+ \frac{1}{2} \frac{A_R^2}{R_R} \cos \left( 2\Phi_R + 2\Omega_R (t-\tau) \right) \bigg[ -\frac{496}{15} \nu A_R R_R^5 \Omega_R^6 \bigg[ (t-\tau) \bigg[ +(\tau-t_0) \bigg] \sin \left( \Phi_R + \Omega_R (t-\tau) \right) \\ &+ \delta_R^{v^{10}} \bigg] + \delta_R^{v^{10}} \sin \left( \Phi_R + (t-\tau) \Omega_R \right) \end{split}$$

- Yields the counter-terms for R and A through 2-loops
- Importantly, cross terms involving  $(t-\tau)^p(\tau-t_0)^q$  automatically cancel with other terms containing lower-order counter-terms (self-consistency).

At the end of the day, the counter-terms through 2-loops are

$$\begin{split} \delta_R &= \frac{64\nu}{5} R_R^6 \Omega_R^6 (\tau - t_0) - \frac{6144}{25} \nu^2 R_R^{11} \Omega_R^{12} (\tau - t_0)^2 + \mathcal{O}(R_R \epsilon^3) \\ \delta_\Omega &= -\frac{96\nu}{5} R_R^5 \Omega_R^7 (\tau - t_0) + \frac{16896}{25} \nu^2 R_R^{10} \Omega_R^{13} (\tau - t_0)^2 + \mathcal{O}(\Omega_R \epsilon^3) \\ \delta_A &= \frac{496}{15} A_R \nu R_R^5 \Omega_R^6 (\tau - t_0) + \mathcal{O}(A_R \epsilon^3) \\ \delta_\Phi &= -\Omega_R (\tau - t_0) + \frac{48\nu}{5} R_R^5 \Omega_R^7 (\tau - t_0)^2 - \frac{5632}{25} \nu^2 R_R^{10} \Omega_R^{13} (\tau - t_0)^3 \\ &+ \frac{504}{5} \nu A_R R_R^4 \Omega_R^5 \sin \Phi_B(t_0) - \frac{5}{4} \frac{A_R^2}{R_R^2} \sin 2\Phi_B(t_0) + \mathcal{O}(\epsilon^3) \end{split}$$

RG equations for initial data parameters are

$$egin{aligned} rac{dR_R}{d au} &= -rac{64
u}{5}R_R^6\Omega_R^6 \ rac{d\Omega_R}{d au} &= rac{96
u}{5}R_R^5\Omega_R^7 \ rac{d\Phi_R}{d au} &= \Omega_R \ rac{dA_R}{d au} &= -rac{496}{15}A_R
u R_R^5\Omega_R^6 \end{aligned}$$

- A large number of cancellations happen to prevent secular terms from remaining in the RG equations (self-consistency)
- RG equations and solutions for all renormalized quantities (except A) are same as at 1-loop

• Solution for  $A_R$  (=  $e_R R_R$  where  $e_R$  is the orbit's small eccentricity) is

$$A_R(t) = A_R(t_i) \left(\frac{R_R(t)}{R_R(t_i)}\right)^{31/12} \Longrightarrow e_R(t) \equiv \frac{A_R(t)}{R_R(t)} = e_R(t_i) \left(\frac{R_R(t)}{R_R(t_i)}\right)^{19/12}$$

- Power of 19/12 accounts for the circularization of a compact binary inspiral
- Matches the well-known expression of Peters (1964) in the limit of small orbital eccentricity.
- RG invariants are same as at 1-loop except for a 2-loop modification to  $A_R$  invariant:

$$A_R(t) = \text{constant} \longrightarrow e_R^{12}(t)R_R^{19}(t) = \text{constant}$$

Full, resummed perturbative solution through 2<sup>nd</sup> order is:

$$\begin{split} r(t) &= R_R(t) \left[ 1 + e_R(t) \sin \Phi_R(t) + \frac{1}{2} e_R^2(t) - \frac{29696}{75} \nu^2 R_R^{10}(t) \Omega_R^{10}(t) \right. \\ & \left. - \frac{656}{15} \nu e_R(t) R_R^5(t) \Omega_R^5(t) \cos \Phi_R(t) + \frac{1}{2} e_R^2(t) \cos 2\Phi_R(t) + \mathcal{O}\left(v_R^{15} \Omega_R(t-t_i)\right) \right] \\ \omega(t) &= \Omega_R(t) \left[ 1 - 2e_R(t) \sin \Phi_R(t) + \frac{904}{15} \nu e_R(t) R_R^5(t) \Omega_R^5(t) \cos \Phi_R(t) - \frac{5}{2} e_R^2(t) \cos 2\Phi_R(t) + \mathcal{O}\left(v_R^{15} \Omega_R(t-t_i)\right) \right] \\ \phi(t) &= \Phi_R(t) + 2e_R(t) \cos \Phi_R(t) + \frac{504}{5} \nu e_R(t) R_R^5(t) \Omega_R^5(t) \sin \Phi_R(t) - \frac{5}{4} e_R^2(t) \sin 2\Phi_R(t) + \mathcal{O}\left(v_R^{15} \Omega_R(t-t_i)\right) \end{split}$$

# Binary inspirals at first post-Newtonian order

- Include 1PN radiation reaction force but 0PN potential (for demonstration)
- Following the same steps as for OPN order, the 1-loop RG equations are

$$egin{aligned} rac{dR_R}{d au} &= -rac{64
u}{5}R_R^6\Omega_R^6 - rac{4
u}{105}(336
u - 3179)R_R^8\Omega_R^8 \ rac{d\Omega_R}{d au} &= rac{96
u}{5}R_R^5\Omega_R^7 + rac{2
u}{35}(336
u - 3179)R_R^7\Omega_R^9 \ rac{d\Phi_R}{d au} &= \Omega_R \;, \;\; rac{dA_R}{d au} &= 0 \end{aligned}$$

Analytical solutions can be found when integrating these RG equations

$$\begin{split} -\frac{64\nu}{5}M^3(t-t_i) &= \frac{1}{4}\big(R_R^4(t) - R_R^4(t_i)\big) + \frac{1}{3}\alpha M\big(R_R^3(t) - R_R^3(t_i)\big) + \frac{1}{2}\alpha^2 M^2\big(R_R^2(t) - R_R^2(t_i)\big) \\ &\quad + \alpha^3 M^3\big(R_R(t) - R_R(t_i)\big) + \alpha^4 M^4 \log\bigg(\frac{R_R(t) - \alpha M}{R_R(t_i) - \alpha M}\bigg) \\ \Omega_R(t) &= \Omega_R(t_i)\bigg(\frac{R_R(t)}{R_R(t_i)}\bigg)^{3/2} = \frac{M^{1/2}}{R_R^{3/2}(t)} \qquad \text{(same as OPN)} \\ -\frac{32\nu}{5}M^{5/2}\big(\Phi_R(t) - \Phi_R(t_i)\big) &= \frac{1}{5}\big(R_R^{5/2}(t) - R_R^{5/2}(t_i)\big) + \frac{1}{3}\alpha M\big(R_R^{3/2}(t) - R_R^{3/2}(t_i)\big) + \alpha^2 M^2\big(R_R^{1/2}(t) - R_R^{1/2}(t_i) - R_R^{1/2}(t_i)\big) \\ &\quad -\alpha^{5/2}M^{5/2}\left[\tanh^{-1}\sqrt{\frac{R_R(t)}{\alpha M}} - \tanh^{-1}\sqrt{\frac{R_R(t_i)}{\alpha M}}\right] \qquad \alpha = \frac{3179}{336} - \nu \end{split}$$

## **Summary**

- The Dynamical Renormalization Group method:
  - Is a systematic, turn-the-crank way to solve differential equations
  - Provides formal error estimates on the resulting globally valid approximate solutions
  - Generates perturbatively invariant quantities along a RG flow
  - Has built-in checks for self-consistency that can be used to verify correctness of the calculation
  - Subsumes other well-known global approximation methods including:
    - WKB
    - Multiple scale analysis
    - Boundary layer theory
- We've applied DRG to several problems, at varying levels of completion:
  - Damped harmonic oscillator (useful test ground for understanding the method in detail)
  - Nonspinning 0PN compact binary inspirals
  - Nonspinning 1PN compact binary inspirals (nearly complete)
  - Tidal dissipation of spinning, extended bodies in a binary (in progress)
  - Poynting-Robertson effect on motion of dust irradiated by a star (nearly complete)
  - Scalar self-force inspirals in a weak gravitational field

# Future work (1)

- Apply DRG to precessing compact binary inspirals and other spinning systems
  - Can analytic solutions to the RG equations be found?
  - Provide a formal error estimate for the validity of the resummed perturbative solutions
- Do the RG invariants have symmetries associated with them?
  - Is there a "Noether's Theorem" that relates continuous symmetry transformations to these quantities conserved throughout the RG flow (e.g., inspirals)?
  - Equal-mass and equal-spin-magnitude compact binary inspirals possess an inspiral-invariant quantity found empirically in Galley et al (2010): Is it derivable using DRG? Is there a similar expression more generally applicable?

$$\frac{2\hat{\boldsymbol{S}}_1\cdot\hat{\boldsymbol{S}}_2+(\hat{\boldsymbol{S}}_1\cdot\hat{\boldsymbol{L}})(\hat{\boldsymbol{S}}_2\cdot\hat{\boldsymbol{L}})}{\sqrt{5}}$$

- Can DRG be combined with numerical solutions of backgrounds?
  - If so, could be useful for resumming secular divergences encountered in numerical simulations of binary black holes for theories with corrections to general relativity [see Okounkova et al (2017)]
  - Could also be useful for calculating gravitational self-force inspirals
     [see Gralla & Wald (2008), Warburton et al (2012), Osburn et al (2016)]

# Future work (2)

- Could DRG handle transient (orbital) resonances since averaging methods are not used? [e.g., see Flanagan & Hinderer (2012) for the breakdown of averaging]
- Other interesting possible applications include:
  - Exoplanet orbital evolutions
  - Binary inspirals/outspirals of not-so-compact bodies (e.g., mass-transferring stellar bodies)
  - Orbital mechanics of satellites



jpl.nasa.gov